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SUMMARY

The brain’s response to sensory input is strikingly
modulated by behavioral state. Notably, the visual
response of mouse primary visual cortex (V1) is
enhanced by locomotion, a tractable and accessible
example of a time-locked change in cortical state.
The neural circuits that transmit behavioral state to
sensory cortex to produce this modulation are un-
known. In vivo calcium imaging of behaving animals
revealed that locomotion activates vasoactive intes-
tinal peptide (VIP)-positive neurons in mouse V1
independent of visual stimulation and largely through
nicotinic inputs from basal forebrain. Optogenetic
activation of VIP neurons increased V1 visual
responses in stationary awake mice, artificially
mimicking the effect of locomotion, and photolytic
damage of VIP neurons abolished the enhancement
of V1 responses by locomotion. These findings
establish a cortical circuit for the enhancement of
visual response by locomotion and provide a poten-
tial common circuit for the modulation of sensory
processing by behavioral state.

INTRODUCTION

Sensory responses in neocortex are modulated by behavioral

states, sleep and wakefulness being the states studied longest.

Attention, for example, has long been known to alter the cortical

response to sensory stimuli (Fontanini and Katz, 2008; Maunsell

and Cook, 2002; Posner and Petersen, 1990). Recently, locomo-

tion was found to increase the gain of excitatory neurons in

mouse primary visual cortex (V1) without altering their sponta-

neous activity or orientation selectivity (Niell and Stryker, 2010).

This increase was found to be central rather than peripheral

because there was no similar increase in the lateral geniculate

nucleus (LGN), which relays activity from the eyes to the cortex.

The neural circuit that transmits information about behavioral

state to sensory cortex is largely unknown. Previous studies
have shown that different types of cortical neuronswere differen-

tially modulated by behavioral state (Reynolds and Chelazzi,

2004). In particular, some putative inhibitory neurons were

modulated differently from the more typical broad-spiking excit-

atory neurons (Chen et al., 2008; Mitchell et al., 2007; Niell and

Stryker, 2010). Changes in the balance between intrinsic excit-

atory and inhibitory conductances have long been linked to the

change of brain state (Bazhenov et al., 2002; Hill and Tononi,

2005), and one salient feature of awake cortical responses is

powerful inhibition (Haider et al., 2013). Inhibitory neurons may

alter dendritic integration of sensory signals (Huber et al.,

2012; Petreanu et al., 2012; Xu et al., 2012), and different inhib-

itory neurons have been hypothesized to play critical roles in

behavioral state-dependent modulation of sensory processing

(Buia and Tiesinga, 2008). However, electrophysiology alone

does not allow one to distinguish among the large variety of

GABAergic neurons with distinct physiological functions (Huang

et al., 2007; Markram et al., 2004). Recent advances in mouse

genetics and in vivo imaging technology now allow one to char-

acterize the responses of different types of inhibitory neurons in

the mouse V1 in awake animals that are free to run (Dombeck

et al., 2010; Harvey et al., 2012; Taniguchi et al., 2011).

By crossing Ai14 (Cre-dependent TdTomato reporter) mice

with vasoactive intestinal peptide (VIP)-Cre mice (Madisen

et al., 2010; Taniguchi et al., 2011), we labeled VIP-positive

GABAergic neurons genetically. We then imaged the calcium re-

sponses of these VIP neurons in freely running head-fixed mice

with or without visual stimulation. We found that the neural activ-

ity of VIP neurons inmouse V1 is closely correlated with the loco-

motion evenwithout visual stimulation, whenmost other neurons

in the visual cortex show only spontaneous activity. Visual stim-

ulation, which drove the other cortical neurons, did not increase

the activation of VIP neurons by locomotion. A similar approach

revealed that somatostatin (SST) neurons were inhibited by loco-

motion, consistent with a circuit in which VIP cells increase activ-

ity of neighboring excitatory cells by inhibiting their inhibitory

input from SST cells (Pfeffer et al., 2013). Also consistent with

this circuit, parvalbumin (PV) neurons showed heterogeneous re-

sponses to locomotion. The local blockade of nicotinic cholin-

ergic input, but not of glutamatergic input, reduced the response

of VIP neurons to locomotion by more than two thirds, and
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Figure 1. Calcium Imaging of VIPNeurons In Vivo in BehavingMouse

(A) Images in vivo of V1 in VIP-Cre::Ai14 mouse. Left: projection along z-axis,

and is a ‘‘top-down view’’ of the brain showing the lateral distribution of VIP

neurons. Right: projection along x axis, and is a ‘‘side view’’ of the brain

showing the distribution of VIP neurons across different cortical layers.

(B) After loadingOGB-1, imageswere taken at 800 nm (green channel only, left)

to image the calcium response, and at 910 nm to visualize the TdTomato-

expressing VIP neurons (right). Red arrows point to a VIP neuron; green arrows

indicate a non-VIP neuron.

(C) Example showing calcium responses of the VIP (middle) and non-VIP

(bottom) neurons shown in (B) in relation to running speed (top).

(D) The distribution of the calcium signal in relation to the running speed for

each signal point of the traces in (C). The side panels show the count of signal

points along corresponding axis. The red line is the average fluorescent value

along the running axis smoothed with a 50-data point sliding window.
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measurements in vitro disclosed powerful nicotinic cholinergic

input to VIP neurons. Rabies-virus-based retrograde tracing

(Wickersham et al., 2007) showed that the upper layer VIP neu-

rons in V1 receive direct input from the nucleus of the diagonal

band of Broca (NDB), a cholinergic center in basal forebrain.

Finally, activating VIP neurons in mouse V1 optogenetically in

stationarymicemimicked the effect of locomotion and increased

the visual responses of neurons in V1, while focal damage to VIP

neurons blocked the enhancement of cortical responses by

locomotion. Interestingly, VIP neurons in other sensory cortices

also responded to locomotion, though less vigorously than in

V1. Our findings therefore reveal a cell-type-specific circuit that

mediates the enhancement of visual response by locomotion.

We suggest that this circuit may be a common pathway medi-

ating behavioral state-dependent gain control in the neocortex.

RESULTS

VIP Neurons in V1 Respond to Locomotion
We first examined whether we could observe the increase of

visual response induced by running using in vivo calcium imag-

ing. Using an apparatus that allows the mouse to run freely on

a styrofoam ball floating on air while its head is fixed in space

(Dombeck et al., 2010), we recorded the trackball movement

and calcium signals simultaneously using two-photon imaging

of neurons loaded with Oregon Green BAPTA (OGB-1), allowing

us to analyze the calcium response of many single neurons in

relation to locomotion (Figures S1A and S1D available online).

We then calculated a ‘‘locomotion modulation index’’ by dividing

the calcium response amplitude during locomotion by its ampli-

tude in the stationary state separately for each orientation of

visual stimulus gratings (Figures S1C and S1F). On average,

running led to an increase of 37% ± 7% in the calcium response

(Figure S1G), demonstrating that our in vivo calcium imaging

system is able to reproduce the findings made electrophysiolog-

ically (Niell and Stryker, 2010).

To study VIP neurons, we genetically labeled VIP-positive

GABAergic neurons by crossing VIP-Cre mice with Ai14, a cre-

dependent TdTomato reporter line. VIP neurons are present in

both upper and deep layers, as shown previously (Taniguchi

et al., 2011). In vivo two-photon imaging in V1 of VIP-Cre::Ai14

mice allowed us to visualize the dendrites and cell bodies of

VIP neurons in upper layers (layer I to II-III) (Figure 1A). We then

imaged the calcium responses of VIP neurons 150–300 mm

below the pia, using two-photon microscopy during locomotion

and stationary alertness. After OGB-1 loading, the VIP neurons

could be readily identified under 910 nm excitation (Figure 1B,

red arrow), while the calcium imaging was performed under

800 nm (Figure 1B).

We first examined whether the activity of VIP neurons is corre-

lated with locomotion in the absence of visual stimulation in

darkness. To our surprise, while non-VIP neurons (Figure 1B,

green arrow) showed only low-frequency spontaneous calcium

spikes similar to those when the animal was stationary, the cal-

cium responses of VIP neurons were greatly elevated during

locomotion (Figure 1C). The change from the stationary (running

speed < 1 cm/s) to the ‘‘running’’ state (running speed > 1 cm/s)

was evident when the calcium traces were plotted with the



Figure 2. Calcium Responses of VIP Neu-

rons Are Closely Correlated with Running

and Are Modulated by Visual Stimulation

(A and B) The cross-correlation between the cal-

cium response and running speed chart, when

imaged with (A) or without (B) visual stimulation.

The thin red lines are the cross-correlation curves

of all recorded VIP neurons (A, n = 28, 4 mice;

B, n = 44, 7 mice). The thick red curve is the

average of all thin red curves. The thick green

curve is the average of the cross-correlation

curves of all recorded non-VIP neurons (A, n = 77,

4 mice; B, n = 76, 7 mice).

(C and D) The distribution of the zero-time cross-

correlation value of all recorded VIP and non-VIP

neurons, when imaged with (C) or without (D)

visual stimulation. The green and red curves are

fitted curve with Gaussian distribution.

(E and F) The calcium responses of VIP (red traces)

and non-VIP neurons (green traces) aligned to the

running episodes (black traces), when imagedwith

(E) or without (F) visual stimulation. Each thin trace

(red or green) is the average of all extracted

responses of a single cell.
running speed (Figure 1D). In contrast, the calcium responses of

nearby non-VIP neurons were not increased during locomotion

(Figure 1D, red lines). Like the visual responses of excitatory neu-

rons in V1 (Figure 3G of Niell and Stryker, 2010), the calcium re-

sponses of the VIP neurons in the running state were only weakly

(though significantly) modulated by changes in running speed.

The effects of locomotion on the responses of the VIP neurons

in the absence of visual stimulation were therefore distinct

from those of nearly all non-VIP neurons.

Analysis of all VIP neurons imaged under conditions of no

visual stimulation by calculating the cross-correlation between

the calcium signal and running speed revealed a single positive

peak around time zero (0.47 ± 0.03, mean ± SEM, n = 28) (Fig-

ure 2A). The activities of non-VIP neurons were in general not

altered by locomotion in the absence of visual stimulation. While

20/28 imaged VIP neurons had a zero-time cross-correlation

larger than 0.4, only 3/77 non-VIP neurons had a zero-time

cross-correlation larger than 0.4 (Figure 2C), indicating that VIP

neurons constitute the majority of the neurons responsive to

locomotion in the absence of visual stimulation in mouse V1.
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Visual Stimulation Does Not
Increase the Response of VIP
Neurons in V1 to Locomotion
A signal conveying behavioral state to

sensory cortex would ideally not be

confounded by the sensory response

that it modulates. Interestingly, we found

that the cross-correlation between the

VIP neurons’ calcium responses and

locomotion was not increased by visual

stimulation with drifting gratings, and

indeed was significantly reduced (0.28 ±

0.03, mean ± SEM, n = 44, p < 0.0001

comparing with no visual stimulation
group, Mann-Whitney U test) (Figure 2B and Figure S2A for

paired comparison of the 12 neurons imaged under both condi-

tions). The distribution of all VIP neurons’ cross-correlations

shifted toward lower value, while the distribution of non-VIP

neurons, the responses of which were time locked to the visual

stimuli rather than to locomotion, did not change (Figure 2D).

Although the responses of the majority of neurons were posi-

tively modulated by locomotion, the average cross-correlation

between locomotion and the calcium responses of non-VIP neu-

rons did not show a positive peak, because the episodes of

running were independent of the onset of visual stimulation.

To further analyze the response of VIP neurons to locomotion,

we extracted all running ‘‘episodes’’ for which the mouse was

stationary (average speed < 1 cm/s) during the 5 preceding sec-

onds and aligned the calcium response to the start of running.

While each mouse had varying numbers of such running epi-

sodes, we averaged all such aligned events for each neuron

and to produce an averaged trace for each neuron (Figure 2E,

each faint red trace is one VIP neuron). We then averaged the

response traces of all neurons and found the averaged response
, March 13, 2014 ª2014 Elsevier Inc. 1141



of VIP neurons to running was 5.42% ± 0.66% of baseline level

(Figure 2E, dark red trace). Such alignment further illustrates

the tight coupling between VIP calcium response and running.

The same analysis was also done for neurons imaged during vi-

sual stimulation, and we found that the response amplitude of

VIP neurons was 3.53% ± 0.56% (mean ± SEM) of baseline level

(p = 0.017 comparing with no visual stimulation group, Mann-

Whitney U test), while the average running speed was similar

(Figure 2F and Figure S2B for paired comparison of the 12 neu-

rons imaged under both conditions). Such decrease of VIP neu-

rons’ response to locomotion under visual stimulation may result

from increased inhibitory drive from visually activated inhibitory

neurons. The reduced locomotion response and VIP neurons’

response to visual stimulation (Figures S2C and S2D) may both

contribute to the decreased cross-correlation. Nevertheless,

VIP neurons responded strongly and faithfully to locomotion

both during and in the absence of visual stimulation.

Locomotion Differentially Modulates Responses of
Other Inhibitory Neurons
To determine how selectively locomotion activates VIP and other

inhibitory neurons, we examined the calcium responses of PV

and SST neurons under the same conditions as those used for

VIP neurons. We first examined the responses of three major

inhibitory neuron classes using adeno-associated viral (AAV)

transfection of floxed GCaMP6s into the specific Cre-expressing

mice (Chen et al., 2013). For VIP neurons, the calcium signal from

GCaMP6 was again closely associated with locomotion. The

cross-correlation between the GCaMP6 signal and locomotion

is consistent with the results in Figure 2A, and the distribution

of the zero-time cross-correlation showed a single peak with a

value near 0.5 (Figure 3A). The responses of PV neurons were

heterogeneous. Many PV neurons were positively associated

with locomotion, while others were suppressed by locomotion

(Figures S3A and S3B). The cross-correlation curves were also

heterogeneous, making the distribution of zero-time cross-cor-

relations bimodal, with one group peaking around 0.5 and the

other peaking at a negative value (Figure 3B). On the other

hand, the calcium responses of SST cells were suppressed by

locomotion (Figure S3C). The average cross-correlation of SST

neuron activity with locomotion was negative at time-zero, and

the distribution of zero-time cross-correlation had a single nega-

tive peak (Figure 3C). Furthermore, the average calcium signal of

SST neurons was consistently reduced by running (Figure S3D,

left, normalized signal during running versus stationary, p <

0.001, paired t test). On average, the zero-time cross-correlation

of VIP neurons was 0.58 ± 0.03 (n = 21), significantly different

from that of PV neurons (0.30 ± 0.06, n = 40, p = 0.01, rank-

sum test), and SST neurons was �0.19 ± 0.05 (n = 11, p <

0.005 comparing with 0, t test), which were also different from

each other (Figure 3D, p < 0.0001, one-way ANOVA). Similar

results were also obtained using OGB-1 in TdTomato labeled

PV or SST neurons (Figure S3D, right, normalized signal during

running versus stationary, p < 0.001; and Figures S3E–S3G).

By aligning calcium responses to the start of running events,

the GCaMP6 signal of VIP neurons on average increased

155.0% ± 34.8%, and the distribution of cross-correlations of

the extracted events and calcium signal had a single peak at
1142 Cell 156, 1139–1152, March 13, 2014 ª2014 Elsevier Inc.
0.7 (Figure 3E). The majority of the PV neurons responded to

the start of running, but many responses were small or negative

(Figure 3F), resulting in a lower average response amplitude

(105.0% ± 23.2%) comparing to that of VIP neurons (Figure 3H).

For SST neurons, no significant GCaMP6 signal was precisely

aligned to the start of running (Figure 3G). Similar results were

also found using OGB-1 in TdTomato labeled PV and SST neu-

rons (Figures S3H–S3J).

Qualitatively, the responses of VIP neurons differed from

those of PV and SST neurons by remaining elevated throughout

the period of locomotion in the dark; while those PV neurons

whose activity increased with the onset of locomotion were

less tightly coupled, many falling nearly to baseline before the

animal became stationary. By aligning GCaMP6 signal to the

end of running events, all VIP neurons showed a clear reduction

of calcium signal in response to the decreasing running speed,

and all but one extracted event were strongly positively corre-

lated with time at which locomotion ceased (Figure 3I). On

average, the calcium signal of VIP neurons reduced from

91.1% ± 13.8% higher than baseline to baseline when the animal

transited from running to stationary (Figure 3L). While a few PV

neurons responded like VIP neurons, many did not show a clear

response to the end of running, and the distribution of the cross-

correlation of extracted events was distributed broadly around

0 (Figure 3J). The average calcium signal of PV neurons declined

from 34.0% ± 6.5% higher than baseline to baseline when the

animal transitioned from running to stationary (Figure 3L), about

1/3 of that of VIP neurons. On the other hand, the ending of

running events resulted in an increase of the calcium signal of

SST neurons, because some neurons started firing immediately

after end of running (Figure 3K), and the calcium signal of SST

neurons just before the end of running was near baseline

(5.1% ± 11.9%) (Figure 3L).

Nicotinic Activation of VIP Neurons by Locomotion
Stimulation of basal forebrain has been reported to activate

VIP neurons in V1 through nicotinic acetylcholine receptors

(nAChRs) (Alitto and Dan, 2012). The midbrain locomotor center

including the pedunculopontine tegmental nucleus (PPTg) pro-

jects to multiple subcortical and cortical areas, as well as to

basal forebrain (Garcia-Rill, 1991; Newman et al., 2012). We

sought to identify the afferent pathways mediating activation of

upper-layer VIP neurons during locomotion by imaging VIP neu-

rons’ response after local infusion of different channel blockers

into V1 (Figure 4A). After loading OGB-1, an Alexa-594 loaded

pipette with either control loading buffer solution or drug solution

was placed close to the OGB-1-loaded area (Figure 4B). We first

injected 500 nl of loading buffer, and found no effect on the

response of VIP neurons to locomotion in the absence of visual

stimulation (zero-time cross correlation: loading buffer injection

0.46 ± 0.05, n = 11, no injection 0.47 ± 0.03, n = 28; response

amplitude: loading buffer injection 5.92% ± 0.77%, no injection

5.42% ± 0.66%) (Figures 4C and 4D, red traces comparing

with Figures 2A and 2E). Local injection of the glutamate receptor

antagonist NBQX (1 mM) also did not change the response to

locomotion (zero-time cross correlation: 0.36 ± 0.09; response

amplitude: 6.62% ± 2.58%, n = 9) (Figures 4C and 4D, blue

traces). In contrast, a similar injection of the nAChRs antagonists



Figure 3. Locomotion Differentially Modulates the Responses of Different Types of Inhibitory Neurons

(A–C) The cross-correlation between the GCaMP6s calcium signal and running speed chart for VIP (A), PV (B), and SST (C) neurons. The thin lines are the cross-

correlation curves of all recorded neurons (A, n = 21; B, n = 40; C, n = 11). The thick curve is the average of all thin curves. Insert histograms show distribution of

zero-time cross-correlation values, and the curves are fitted with single or double-Gaussian functions.

(D) The average zero-time cross-correlation for three different inhibitory neurons (mean ± SEM).

(E–G) The calcium responses of VIP (E), PV (F), and SST (G) neurons are aligned to the start of running episodes (black traces). Each thin trace is the average of all

extracted events of a single neuron, and the thick trace is the average of all thin traces. Insert histograms show distribution of zero-time cross-correlation values

between extracted running speed and calcium signal change of all extracted events of all neurons.

(H) The average calcium response amplitude of the three types of inhibitory neurons. The values plotted are the average of the curves between 2 s and 4 s on the

x axis in (E–G) (mean ± SEM).

(I–K) The calcium responses of VIP (I), PV (J), and SST (K) neurons are aligned to the end of running episodes (black traces). Each thin trace is the average of all

extracted events of a single neuron, and the thick trace is the average of all thin traces. Insert histograms show distribution of zero-time cross-correlation values

between extracted running speed and calcium signal change of all extracted events of all neurons.

(L) The average calcium response amplitude of three types of inhibitory neurons. The values plotted are the average of the curves between 1 s to 3 s on the x axis in

(I–K) (mean ± SEM).
mecamylamine (MEC) and methylycaconitine (MLA) (1 and

0.1 mM, respectively) did not block the visual responses of

nearby non-VIP neurons (Figures S4A–S4F), but dramatically

reduced the responses of VIP neurons to locomotion (zero-

time cross correlation: 0.16 ± 0.05; response amplitude:

1.5% ± 0.46%, n = 27) (Figures 4C and 4D), without, of course,

changing the locomotion speed (Figure 4E). Furthermore, local

injection of NBQX blocked the effect of visual stimulation on

VIP neurons’ response to running (Figures S4G and S4H,

comparing with Figures S2A and S2B), indicating the effective-
ness of NBQX in the blockade of visually driven neuronal activa-

tion. It should be noted, however, that the response of VIP

neurons to locomotion in the absence of visual stimulation was

not completely abolished by nAChRs antagonists, indicating

that there are probably other sources of locomotory input to

VIP neurons.

These findings in vivo suggest that acetylcholine (ACh) acti-

vates VIP neurons directly through nAChR. In acute cortical

slices, local puffing of ACh (100 mM) reliably elicited action

potentials in VIP neurons in V1 (Figure S5A). In the presence of
Cell 156, 1139–1152, March 13, 2014 ª2014 Elsevier Inc. 1143



Figure 4. Activation of VIP Neurons by

Locomotion via nAChRs

(A) Diagram showing the experimental setup.

Mouse with fixed head is free to run on a

Styrofoam ball floating on air. After loading

OGB-1, a glass pipet loaded with Alexa-594 and

drug solutions is placed near the OGB-1 loading

area under two-photon imaging.

(B) An example showing drug pipette and OGB-1

loading.

(C) Left: cross-correlation between calcium re-

sponse and running speed of VIP neurons during

local infusion of different drug solutions (mean ±

SEM; loading buffer, n = 11, 3 mice; MEC&MLA,

n = 27, 4 mice; NBQX, n = 17, 3 mice), when

imagedwithout visual stimulation. Right: zero-time

cross-correlation values of VIP neurons under

different drug conditions (mean ± SEM, *p < 0.01,

one-way ANOVA and Bonferroni post hoc test).

(D) Left: calcium response aligned to each running

episodes (mean ± SEM). Right: plateau response

amplitude of calcium responses aligned to running

(mean ± SEM).

(E) No effect of drug infusion on locomotion. Left:

extracted running episodes under different drug

conditions (mean ± SEM; loading buffer, n = 23;

MEC&MLA, n = 89; NBQX, n = 37). Right: running

speed corresponding to the plateau calcium

response shown in (D) (mean ± SEM, *p > 0.05,

one-way ANOVA and Bonferroni post hoc test).
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Figure 5. Retrograde Labeling of Monosynaptic Inputs to Upper Layer VIP Neurons in Mouse V1

(A) AAV2/9-TRE-HTGwas injected into V1 of VIP-Cre: ROSA-LSL-tTAmouse, and rabies virus (EnvA-SAD-DG-mcherry) was injected 2 weeks later into the same

site. VIP neurons expressing hGFP were restricted to the upper layer.

(B) The local input neurons to hGFP-expressing VIP neurons express mCherry and are located across different layers of V1.

(C) Zoom-out view of the brain slice showing the injection site in V1.

(D) Sparse labeling of input neurons and neurites in and near LGN.

(E) Coronal section of the forebrain showing labeling of basal forebrain nucleus.

(F) Zoom-in view of the labeling of diagonal band nucleus.

(G) mCherry-expressing neurites and a pyramidal neuron in M2.

(H) Labeling of pyramidal neurons in barrel cortex.

(I) Labeling of pyramidal neurons in auditory cortex.
tetrodotoxin (TTX), the depolarization induced by ACh was abol-

ished by the nAChR blockers MEC&MLA (12.41 ± 0.98 mV

versus 2.61 ± 0.26 mV, p < 0.01, Figures S5B and S5C), confirm-

ing the existence of direct nicotinic cholinergic responses in VIP

neurons.

To further investigate the input to upper layer VIP neurons

in V1, we used rabies virus to trace their monosynaptic inputs

(Wickersham et al., 2007). By restricting the depth of the

virus injection pipette, we tried to target the upper layer VIP

neurons in V1 (Figures 5A–5C). As expected, many V1 neurons

were labeled as direct input neurons, and sparse neurons

in LGN were also labeled (Figure 5D). Interestingly, such retro-
grade tracing identified the nucleus of the diagonal band of

Broca (NDB), a basal forebrain nucleus enriched of cholinergic

neurons, as a prominent source of input to upper layer VIP neu-

rons in V1 (Figure 5E white arrow, 5F, and S6).While we labeled

more than 50 upper layer VIP neurons in V1, only 0–1 neuron

per mouse was retrogradely labeled in motor cortex or the

border between motor and cingulate cortex (Figure 5G), sug-

gesting at most very sparse direct input from motor cortex.

Surprisingly, a considerable number of pyramidal neurons in

multiple layers of primary somatosensory barrel cortex, and

some neurons in primary auditory cortex showed retrograde

labeling (Figures 5H and 5I).
Cell 156, 1139–1152, March 13, 2014 ª2014 Elsevier Inc. 1145



Figure 6. VIP Neurons Sufficient and

Necessary for Modulation of Gain of Visual

Responses by Locomotion

(A) Section of the visual cortex of a VIP-Cre:Ai14

mouse injected with AAV-DIO-ChETA-YFP. All

VIP-Cre cells express tDTomato (red) and infected

neurons also express ChETA-YFP (green).

(B) Imaging in vivo of VIP neurons infected

with AAV-DIO-ChETA-YFP through thinned skull

craniotomy.

(C) Orientation tuning of an isolated unit in control

(No LED, green) condition and during opto-

genentic activation of VIP neuron (With LED, blue)

condition, in a stationary VIP-Cre:Ai14 mouse

injected with AAV-DIO-ChETA-YFP. Response

values are average of five trials using moving bars;

orientation tuning curves are fitted with double-

Gaussian function.

(D) Comparison of peak responses of isolated

units in stationarymouse during control (No LED)

condition and during optogenetic activation of

VIP neuron (With LED) condition, in VIP-Cre:Ai14

mouse injected with AAV-DIO-ChETA-YFP (blue

circles, 19 units, 3 animals) or without AAV injec-

tion (green circles, 16 units, 2 animals).

(E) Average values of the ratio between With LED

peak response and No LED peak response, of

all the isolated units in either AAV-DIO-ChETA-

YFP injected (blue bar) or no AAV injected (green

bar) VIP-Cre:Ai14 animals (mean ± SEM, *p <

0.009 comparing with ‘‘No ChETA’’ group, Mann-

Whitney U test).

(F–J) Photolytically damaging VIP neurons abol-

ishes increase of visual response induced by

locomotion in non-VIP neurons. After loading

OGB-1 into the V1 of VIP-Cre::Ai14 mice, area of

interest was imaged before (F) and after (G)

photolytic damaging of VIP neurons. Arrows

indicate two VIP neurons. (H) VIP neurons

become round and swollen 2h after photolytic

damage. Arrows indicate two such VIP neurons.

(I) The distribution of the locomotion-modulation-

index (visual response during locomotion / visual

response when stationary), of the ‘‘No Damaging’’

(n = 22) and ‘‘After Damaging’’ (n = 17) groups.

(J) Average values of locomotion-modulation-

index for ‘‘No Damaging’’ and ‘‘After Damaging’’

groups. (mean ± SEM, *p < 0.0001 comparing with

‘‘No Damaging’’ group, rank-sum test).
VIP Neurons Are Key Mediators of the Enhancement of
Visual Responses by Locomotion
It has been reported that VIP neurons in V1 strongly inhibit SST-

positive inhibitory neurons (Pfeffer et al., 2013), whose activation

results in suppression of the visual response of excitatory neu-

rons (Adesnik et al., 2012). Our data and the previous reports

(Niell and Stryker, 2010) therefore provide a plausible mecha-

nism by which VIP neurons could contribute to the increase of

visual response induced by running. To test directly the involve-

ment of VIP neurons in increasing the visual responses of excit-

atory neurons, we conditionally expressed channelrhodopsin in

upper layer VIP neurons in V1 using viral injection of a flexed

ChETA vector into VIP-Cre:Ai14 mice (Figure 6A). Through the
1146 Cell 156, 1139–1152, March 13, 2014 ª2014 Elsevier Inc.
thinned skull for in vivo recording, we could readily image the

dendrites and cell bodies of ChETA-expressing VIP neurons in

V1 (Figure 6B). To determine the impact of activating VIP neurons

on the visual response of V1 neurons, we performed extracellular

recordings as described in Supplemental Information and alter-

nated trials in which VIP neurons were optogenetically-activated

(using a blue light, referred to as LED condition) with control trials

(No LED condition) (Figure 6C). Photo-activation of VIP neurons

in awake stationary mice significantly increased the visual

response of layer 2/3 neurons by 32.4% ± 8.3% (mean ± SEM;

n = 19, p < 0.02, paired Wilcoxon signed rank test) without pro-

ducing locomotion or changing the orientation selectivity index

(OSI) (Figure S7A), while a similar procedure of LED illumination



did not produce significant effects in the animals without ChETA

virus injection (peak response change:�5% ± 10.2%, mean ±

SEM; n = 16, p = 0.47, paired Wilcoxon signed rank test)

(Figure 6D). The increase in visual response induced by VIP

optogenetic activation was highly significant (p < 0.009, Mann-

Whitney U test, comparing LED activation in ChETA versus

control animals without virus injection) (Figure 6E). Therefore,

activating VIP neurons in stationary animals is sufficient to

produce an increase in the visual response similar to that

induced by running.

To investigate the necessity of VIP activation in the increase of

visual response induced by running, we photolytically damaged

VIP neurons and examined the visual responses of nearby non-

VIP neurons. By restricting the scan area briefly to a single-cell

diameter and repeating this procedure one by one over the

upper layer VIP neurons in the microscope field, we used the

excitation beam to photolytically damage the VIP neurons in a

small region of cortex without bleaching the OGB-1 signal of

nearby non-VIP neurons (Figures 6F and 6G). VIP neurons

damaged in this way were first bleached of TdTomato signal

but revealed themselves as swollen after 1–2 hr (Figure 6H).

While the nearby non-VIP neurons still responded to visual stim-

ulation, the enhancement of their activity by locomotion was

significantly reduced (86% ± 16% enhancement without photo

damage versus 12% ± 6% enhancement after photo damage;

p < 0.0001, rank-sum test) (Figures 6I and 6J). Taken together,

these findings indicate that VIP neuron activation is both neces-

sary and sufficient for the increase in the visual response of excit-

atory cells produced by locomotion.

VIP Neurons in other Primary Sensory Cortices also
Respond to Locomotion
Considering the similar distribution pattern of VIP neurons

through the cortical areas, and the broad projection of NDB to

other cortical areas, we examined whether VIP neurons in other

primary sensory cortices are also modulated by locomotion. We

first looked at the primary somatosensory barrel cortex and

found the response of VIP neurons tightly locked to the locomo-

tor activity (Figure 7A). When aligning the fluorescent traces to

the running events, the averaged traces of all VIP neurons

showed a clear correlation with the averaged running trace (Fig-

ure 7B). However, although the mice were running in darkness

with no visual input, the whiskers were intact and the mice

were free to move them. Although the cross-correlations were

in general much lower than that in visual cortex (Figure 7C), the

averaged cross-correlation between calcium responses and

locomotion in VIP neurons was significantly different from that

in non-VIP neurons (0.15 ± 0.08 versus �0.05 ± 0.04, p =

0.047, Mann-Whitney U test, Figure 7D), Furthermore, the loco-

motion response of VIP neurons was also significantly higher

than that of non-VIP neurons (2.75% ± 0.98% versus 0.13% ±

0.66%, p = 0.022, Mann-Whitney U test, Figure 7D).

The responses of VIP neurons in primary auditory cortex were

also associated with locomotor activity (Figure 7E), thoughmuch

less strongly so than those of V1. The aligned fluorescent traces

of all VIP neurons deviated significantly, although only slightly,

from those of non-VIP neurons (Figure 7F). Our setup was far

from ideal in isolating auditory inputs, which might result in a
lower level of cross-correlation (Figure 7G). However, the zero-

time cross-correlation of VIP neuronswas still significantly higher

than those of non-VIP neurons (0.22 ± 0.08 versus �0.02 ± 0.06,

p = 0.043, Mann-Whitney U test, Figure 7H). Likewise, the loco-

motion response of VIP neurons was significantly greater than

that of non-VIP neurons (3.00% ± 1.31% versus �0.33% ±

0.31%, p = 0.022, Mann-Whitney U test, Figure 7H).

DISCUSSION

Sensory responses have long been known to be modulated by

behavioral state, but the neural circuit responsible for this mod-

ulation has remained obscure (Maunsell and Cook, 2002; Niell

and Stryker, 2010; Reynolds and Chelazzi, 2004; Wurtz and

Mohler, 1976). Locomotion in the mouse is an easily measured,

tractable behavioral state that profoundly increases specific

visual responses in V1 without changing selectivity (Niell and

Stryker, 2010). This modulation of V1 activity is thought to arise

in the cortex because locomotion produces no parallel increase

in the responses of neurons in the LGN that provide the visual

input to V1 (Niell and Stryker, 2010).

The present study reveals that a specific type of GABAergic

cortical neuron, the VIP neuron, transmits the signal of locomo-

tion to the cortex and operates through disinhibition of another

GABAergic cortical neuron, the SST cell, to enhance the re-

sponses of neighboring cortical excitatory neurons (Pfeffer

et al., 2013). Evidence for this conclusion includes the consistent

activation of VIP cells by locomotion in darkness (when neigh-

boring excitatory neurons are silent) or in light; the fact that VIP

cell responses vary as a function of walking speed in a way

that mirrors the enhancement of excitatory cell visual responses;

the facts that optogenetic activation of VIP cells mimics the

effect of locomotion in stationary mice and that damage to VIP

cells blocks the enhancement of excitatory cell visual responses

by locomotion; themonosynaptic input to VIP cells from a cholin-

ergic nucleus in the basal forebrain together with the direct nico-

tinic cholinergic activation of VIP cells in vitro and the substantial

reduction of their responses to locomotion by nicotinic blockers

in vivo; and the consistent inhibition of SST cells in alert animals

in vivo by locomotion. These findings establish the VIP cells as a

critical element of the cortical circuit that is responsible for the

effects of locomotion on visual responses inmouse V1. The pres-

ence of elements of this circuit throughout the cortex suggests

that VIP cell activation may be a general mechanism for cortical

gain control by behavioral state.

Sensory-motor integration in rodents has been studied exten-

sively in primary somatosensory barrel cortex, in which whisker

movement and sensory information are sent to different

segments of the same pyramidal neuron (Crochet et al., 2011;

Petreanu et al., 2012; Xu et al., 2012). In barrel cortex the SST

neurons become hyperpolarized and fire fewer action potentials

during active or passive whisker stimulation, in contrast to

neighboring neurons that are excited by stimulation (Gentet

et al., 2012). This finding is consistent with the possibility that a

circuit similar to that in V1 may operate in barrel cortex. Interest-

ingly, it is recently reported that VIP neurons in barrel cortex are

strongly activated by vibrissal motor cortex pyramidal neurons

(Lee et al., 2013).
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Our finding that locomotion activates VIP neurons largely

through cholinergic input is consistent with a role for acetylcho-

line in modulating the visual response. Acetylcholine has been

demonstrated to play important roles in cortical activation and

attentional modulation in many systems (Hasselmo and Gio-

como, 2006; Weinberger, 2007). Cholinergic input has been

shown to modulate several aspects of visual response, such

as the shift of local-field-potential spectrum and response

magnitude (Metherate et al., 1992; Rodriguez et al., 2004;

Sato et al., 1987a; Sato et al., 1987b), similar to what we have

observed for locomotion (Niell and Stryker, 2010). Stimulation

of the basal forebrain has been shown to activate VIP neurons

and layer I interneurons through nAChRs, though not neces-

sarily directly (Alitto and Dan, 2012; Arroyo et al., 2012).

Although we found that VIP neurons receive input from NDB,

they may also receive inputs from other neuromodulatory

sources, which might not be revealed due to the low efficiency

of the rabies-virus-mediated retrograde tracing. The fact that

we were not able completely to block the response of VIP

neurons to locomotion using nicotinic antagonists makes a

role for other neuromodulatory inputs seem likely. For example,

a recent study suggested a role of noradrenergic input (Polack

et al., 2013).

It should also be kept inmind that the basal forebrain responds

to many different stimuli and may influence cortical response by

modulating different populations of neurons. For example, the

neurons in NDB and nearby nuclei have been found to respond

not only to locomotion but also to other stimuli such as

females (inmalemice) andwater (Mink et al., 1983). Furthermore,

different inhibitory neurons may be modulated by cholinergic in-

puts in different manners (Arroyo et al., 2012; Kawaguchi, 1997).

Although it was previously shown that 5-HT3a receptor-positive

neurons, among which VIP neurons are a major population, are

depolarized by nicotine and show no response to muscarine

(Lee et al., 2010), there was no direct evidence that ACh acti-

vates VIP neurons through nAChR. The present study shows

that ACh depolarizes VIP neurons strongly enough to elicit action

potentials through nicotinic receptors. No fast nAChR compo-

nent like that shown in layer I inhibitory neurons (Letzkus et al.,

2011) was evident; our findings showed instead a response

with slow kinetics resembling what has been found in ChAT-

positive bipolar neurons (Arroyo et al., 2012). Therefore, it is

likely that VIP neurons are activated by ACh through non-a7

nAChR.

It was initially surprising that inhibitory VIP neurons were

directly activated by locomotion in the dark when we knew that

locomotion increased visual responses. Recent advances in

mouse genetics, allowing targeted recordings of different types
Figure 7. Locomotion Activates VIP Neurons in Primary Somatosenso

(A) Example showing calcium response of a VIP neuron in barrel cortex in relatio

(B) The calcium response of VIP (red traces, n = 9, 3mice) and non-VIP neurons (gr

traces). Each thin trace (red or green) is the average of all extracted responses o

(C) Cross-correlation between calcium responses and running speed. Thin red l

curve is the average of all thin red curves. The thick green curve is the average o

(D) The average zero-time cross-correlation of VIP neurons is significantly differe

average plateau amplitude of running-aligned calcium responses is significantly d

(E–H) Corresponding data for auditory cortex.
of GABAergic interneurons, have revealed some of the relevant

circuitry (Taniguchi et al., 2011). Our findings that VIP neurons

are activated while SST neurons are inhibited during locomotion

are in good agreement with the current consensus that VIP neu-

ronsmainly innervate SST neurons (Lee et al., 2013; Pfeffer et al.,

2013; Pi et al., 2013), although different effects on SST neurons

have also been reported (Polack et al., 2013). It has recently been

shown that inhibiting SST neurons in V1 also acts to relieve sur-

round suppression in neighboring excitatory neurons and

thereby increase their visual responses (Adesnik et al., 2012),

consistent with a circuit in which activating VIP neurons inhibits

the activity of SST neurons to lead to increased visual response.

Furthermore, besides increasing visual responses, locomotion

has been shown to relieve surround suppression (Ayaz et al.,

2013). SST neurons have also been found not to be active in

anesthetized mice (Adesnik et al., 2012). Therefore, one would

predict that activating VIP neurons in anesthetized mice would

not significantly change the visual response. Indeed, although

we could record strong visual responses in anesthetized mice

(Figure S7C), optogenetically activating VIP neurons did not

significantly change the response magnitudes (Figure S7D), a

finding also consistent with a previous study (Lee et al., 2012).

Effects on stimulus selectivity are also consistent with the

effects of inhibition of SST on excitatory neurons and our VIP

findings. Running increases visual responses without changing

stimulus selectivity (OSI) (Niell and Stryker, 2010). In the present

study, activating VIP neurons increased visual responses and

also did not change OSI (Figure S7A). Furthermore, activating

SST neurons also suppresses the visual response without

changing OSI (Lee et al., 2012). Taken together, these findings

indicate that running increases visual response through acti-

vating a VIP-neuron-mediated disinhibitory circuit involving

SST neurons. It has recently been shown that VIP neurons also

inhibit SST neurons in prefrontal and auditory cortices and that

activating VIP neurons increases auditory responses (Pi et al.,

2013). Combining these with present findings suggests that

VIP-neuron-mediated disinhibitory circuit is the, or at least a prin-

cipal, mechanism of gain control by behavioral state in sensory

cortices.

Only a small fraction of non-VIP neurons (3/77) responded to

locomotion in the dark. Many or all of these were likely to be

PV neurons, about half of which (24/40) were also excited in

association with locomotion. However, the activity of PV neurons

was not as closely coupled to locomotion as that of VIP neurons,

which all responded faithfully to locomotion. The locomotion re-

sponses of many PV neurons were more transient, as evident

particularly in the heterogeneous changes in their calcium sig-

nals when the animal transited from running to stationary
ry and Auditory Cortices

n to running speed.

een traces, n = 15, 3mice) in barrel cortex aligned to the running episodes (black

f a single cell.

ines show cross-correlation curves of all recorded VIP neurons. The thick red

f the cross-correlation curves of all recorded non-VIP neurons.

nt from that of non-VIP neurons (mean ± SEM, left, Mann-Whitney U test). The

ifferent from that of non-VIP neurons (mean ±SEM, right, Mann-Whitney U test).
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(Figure 3J). It has also been shown that PV neurons do not

respond to ACh (Kawaguchi, 1997) and are not directly acti-

vated by stimulating basal forebrain cholinergic neurons (Alitto

and Dan, 2012; Arroyo et al., 2012). The heterogeneous re-

sponses of PV neurons to locomotion are consistent with their

position in the cortical circuit delineated by (Pfeffer et al.,

2013). Because VIP neurons principally inhibit SST neurons,

which then inhibit PV neurons, which also receive local excita-

tion, the activity of PV neurons during locomotion would be ex-

pected to be heterogeneous, as a secondary effect of relieving

the inhibition from SST neurons rather than a direct response to

locomotary input. Further study is required to understand the

dynamic interaction between the different classes of cortical

inhibitory neurons during sensory responses. A previous study

also reported that some neurons are activated during running

in darkness (Keller et al., 2012). The neurons identified in that

study are unlikely to be VIP neurons because they responded

only briefly to some of the onsets and offsets of running, while

we find that VIP neurons respond faithfully and tonically to all

running episodes. It would be intriguing to identify these neu-

rons that respond only to the onset and offset of running.

VIP neuronsmay be involved in other more complex circuits as

well. Some VIP neurons reside in layer I or layer I/II border, and

unidentified layer I interneurons have been reported to be acti-

vated by basal forebrain stimulation through nAChRs (Alitto

and Dan, 2012; Letzkus et al., 2011). Activation of those layer I

interneurons has been found to inhibit PV neurons and increase

pyramidal neuron response in auditory cortex through this dis-

inhibitory circuit (Letzkus et al., 2011). Since VIP neurons also

target some pyramidal neurons (Alitto and Dan, 2012; Lee

et al., 2012), the net physiological effect of activating VIP neurons

may be more complicated than that of activating PV or SST neu-

rons. Indeed, different interneurons might be differentially modu-

lated by behavioral status and change the circuit function (Buia

and Tiesinga, 2008).

Finally, it will be very interesting to investigate the role of VIP

neurons in adult brain plasticity. While an appropriate level of

inhibition is known to be important for cortical plasticity, almost

all previous work on experience-dependent plasticity has

focused on the role of PV neurons (Hensch, 2005). Antidepres-

sant therapy through serotonin-reuptake inhibition has been

shown to increase the capacity for ocular dominance plasticity

in visual cortex in adult animals, accompanying with decreased

GABA transmission (Maya Vetencourt et al., 2008). One inter-

esting feature of VIP neurons is that they express serotonin re-

ceptor 5HT3a receptor (Lee et al., 2010; Rudy et al., 2011).

Therefore, activating VIP neurons by serotonin would be ex-

pected to inhibit other inhibitory neurons and may provide a

potential mechanism for effects on adult plasticity (Kuhlman

et al., 2013).

EXPERIMENTAL PROCEDURES

In Vivo Two-Photon Imaging in Awake Mice

VIP, SST, and PV neurons were labeled for two-photon imaging in vivo in sepa-

rate experiments by crossing tdTomato reporter mouse line with specific cre-

expressing lines. Calcium imaging was performed using OGB1 or GCaMP6s in

alert mice running or standing on a spherical treadmill (modified from the

design of Dombeck et al., 2010). For GCaMP imaging experiment, the Cre-
1150 Cell 156, 1139–1152, March 13, 2014 ª2014 Elsevier Inc.
dependent GCaMP6s-expressing virus was injected 3 weeks before imaging

experiment. Activity of identified inhibitory neuron types during stationery

periods and locomotion with and without visual stimulation was compared

with that of unlabeled neurons. The imaging was performed using a custom

modified Movable Objective Microscope (Sutter Instrument) equipped with a

femtosecond pulsed laser (Coherent) and controlled by ScanImage (http://

scanimag.org). Details about mouse lines and surgery procedures could be

found in the Extended Experimental Procedures.

In Vivo Tetrode Recording in Awake Mice

Extracellular microlectrode recordings were obtained using silicon microelec-

trodes as described previously (Niell and Stryker, 2010). Details about data

acquisition and analysis could be found in the Extended Experimental

Procedures.

In Vivo Drug Infusion

Inputs to VIP neurons were examined by infusion in vivo of different channel

blockers using the Nanoject-II (Drummond Scientific) under the guidance of

two-photon imaging. Detail procedure could be found in Extended Experi-

mental Procedures.

Monosynaptic Retrograde Tracing

The monosynaptic connections to VIP neurons were traced using a modified

rabies virus system developed by (Wickersham et al., 2007). Details of mouse

lines and virus injection procedures could be found in Extended Experimental

Procedures.

Optogenetic Stimulation of VIP Neurons

AAV-2/9-EF1a-DIO-ChETA-EYFP (UPenn Vector Core) was used to express

ChETA in VIP neurons of VIP-Cre mice. A fiber-coupled blue LED (470 nm,

Thorlabs) was used to activate ChETA-expressing neurons. Details of virus

injection and photostimulation could be found in Extended Experimental

Procedures.

Photo Damaging of VIP Neurons In Vivo

VIP neurons were photolytically damaged using the laser light source for two-

photon imaging. Detail procedure could be found in Extended Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures and

seven figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2014.01.050.
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